Iterated extended Kalman smoothing with expectation-propagation
نویسندگان
چکیده
We formulate extended Kalman smoothing in an expec tation-propagation (EP) framework. The approximation involved (a local linearization) can be looked upon as a 'collapse' of a non gaussian belief state onto a Gaussian form. This formulation al lows us to come up with better approximations to the belief states, since we can iterate the algorithm until no further refinement of the beliefs is obtained. Compared to the standard extended Kalman smoother, we linearize around the mode of the actual two-slice belief state instead of the predicted mean of the one-slice belief. In initial experiments with a one-dimensional nonlinear dynami cal system we found that our method improves over the extended Kalman filter and performs comparable to the unscented Kalman filter, whereas only second-order approximations are being made. The EP-formulation in principle allows for incorporation of higher order approximations, possibly leading to further improvements.
منابع مشابه
On the Equivalence of the Extended Kalman Smoother and the Expectation Maximisation Algorithm for Polynomial Signal Models
The Iterated Extended Kalman smoother (IEKS) is shown to be equivalent to one iteration of the Expectation Maximisation (EM)-based SAGE algorithm for the class of nonlinear signal models containing polynomial dynamics. Thus the IEKS is a maximum a posteriori (MAP) state sequence estimator for this class of systems. The Iterated Extended Kalman filter (IEKF) can be thought of as a heuristic, onl...
متن کاملAutonomous Integrated Navigation for Indoor Robots Utilizing On-Line Iterated Extended Rauch-Tung-Striebel Smoothing
In order to reduce the estimated errors of the inertial navigation system (INS)/Wireless sensor network (WSN)-integrated navigation for mobile robots indoors, this work proposes an on-line iterated extended Rauch-Tung-Striebel smoothing (IERTSS) utilizing inertial measuring units (IMUs) and an ultrasonic positioning system. In this mode, an iterated Extended Kalman filter (IEKF) is used in forw...
متن کاملA BP-MF-EP Based Iterative Receiver for Joint Phase Noise Estimation, Equalization, and Decoding
In this work, with combined belief propagation (BP), mean field (MF) and expectation propagation (EP), an iterative receiver is designed for joint phase noise (PN) estimation, equalization and decoding in a coded communication system. The presence of the PN results in a nonlinear observation model. Conventionally, the nonlinear model is directly linearized by using the first-order Taylor approx...
متن کاملThe Iterated Sigma Point Kalman Filter with Applications to Long Range Stereo
This paper investigates the use of statistical linearization to improve iterative non-linear least squares estimators. In particular, we look at improving long range stereo by filtering feature tracks from sequences of stereo pairs. A novel filter called the Iterated Sigma Point Kalman Filter (ISPKF) is developed from first principles; this filter is shown to achieve superior performance in ter...
متن کاملBackward-Smoothing Extended Kalman Filter
The principle of the iterated extended Kalman filter has been generalized to create a new filter that has superior performance when the estimation problem contains severe nonlinearities. The new filter is useful when nonlinearities might significantly degrade the accuracy or convergence reliability of other filters. The new filter solves a nonlinear smoothing problem for the current and past sa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003